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Polynomial Approximations for the Transverse
Magnetic Polarizabilities of Some Small

Apertures

NOEL A. MCDONALD, SENIOR MEMBER, IEEE

Abstract — Polyrromiaf approximations are given for the magnetic

pohwizabilities of some small apertures of various shapes, as fuuctions of

the aperture width to length ratios, for the case where the applied magnetic

field is across the narrower dimeusion of the apertore. The shapes ccmsid-

ered are the rectaugle, diamond, rounded end slot, aud ellipse, of which

only the last has an exact solution.

I. INTRODUCTION

I

NAN EARLIER PAPER [1], polynomial expressions

were given for the electric polarizabilities of small

apertures of the shapes shown in Fig. 1, namely the

rectangle, diamond, rounded end slot, and ellipse. Al-

though those expressions were not exact, all contained

features which would exist in exact solutions if they could

be found, and a comparison with previously published

data indicated that the polynomials had sufficient accu-

racy to be used in many applications.

The question arises whether a similar approach might

also provide useful results for the magnetic polarizabilities.

An important difference between the electric and magnetic

cases is that the magnetic polarizability for the tangential

magnetic field along the major dimension of the aperture

(here referred to as the longitudinal polarizability) is dif-

ferent from that with the tangential magnetic field trans-

verse to the major dimension (here referred to as the

transverse polarizability). There appears to be no general

relationship between the two magnetic polarizabilities.

Also, in the electric case, the polarizability is independent

of the choice of reference directions, and that indepen-

dence was used in [1] to relate the slope of the polarizabil-

ity coefficient to its magnitude for some shapes at an

aspect ratio of 1, thereby providing one equation for

solution of the terms of the polynomial. There seems to be

no equivalent result for magnetic polarizabilities.

This paper is concerned only with transverse magnetic

polarizabilities, i.e., where the tangential magnetic field is

transverse to the longer aperture dimension L, as shown in

Fig. 1. Longitudinal polarizabilities do not appear to be
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Fig. 1. Aperture shapes and direction of applied magnetic field.
(a) Rectangle. (b) Diamond. (c) Rounded end slot. (d) Ellipse.

functions suitable for approximation by simple polyno-

mials.

For each aperture shape, the transverse magnetic

polarizability can be expressed in the form

/ w\

HPm=f ~ L3

in which f (W/L ) is a dimensionless coefficient. In all

cases to follow, the ratio W/L will be designated a.

In the electric polarizability case, the behavior of the

polarizability coefficient for each aperture shape was found

to be quadratic for a + O, and both the magnitude and

slope were known for a =1. This provided enough infor-

mation to define a fourth-power polynomial approxima-

tion. In the transverse magnetic case there is one less

equation as there is no symmetry property, and from the

behavior for a + O and the value at a = 1 there are only

enough equations to define a third-power polynomial ap-
proximation. Also, for the transverse magnetic polarizabili-

ties there are fewer experimental data for comparison, as

Cohn’s electrolytic tank experiments [2] did not include

that orientation. The need for more data for that situation

has been recognized [3].

II. BEHAVIOR FOR W<< L

Consider first the magnetic polarizabilities of the aper-

ture shapes in Fig. 1 with W<< L and with the applied

tangential magnetic field transverse to the aperture, i.e.,
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parallel with the W dimension. In [4] Bethe gave the result

for the magnetic polarizability Pm of a long slit (equivalent

to Fig. l(a) with W<< L) and with transverse magnetic

field as

Pm= : W2L

which may be interpreted as a polarizability of (T/16) W2

per unit length. This suggests that if the width u of a long

narrow aperture varies very slowly along the length, then

the transverse magnetic polarizability could be obtained by

integrating (r/16) a2 along the length of the aperture.

If applied to a long narrow ellipse, as in Fig. l(d) but

with W << L, this postulate gives for the polarizability

; W2L

which agrees with the exact solution from [5] (and that

given in Section III of this paper) if that solution is applied

to an ellipse of eccentricity approaching unity. The appli-

cation of this reasoning to all of the shapes in Fig. 1 gives

for W<< L

I~ W 2L rectangle

1-Z W 2L diamond

Pm= :

~ W 2L rounded end slot

I~ W 2L ellipse.

For each shape and for 0< a <1, the polarizability

coefficient ~(a) is approximated by a polynomial of the

form

f(a) =a+ba+cd+dd. (1)

From the behavior for W<< L, i.e., a + O, then u = O,

b = O, and c is known for each of the four aperture shapes.

The remaining term is obtained from the value of ~(a) at

a =1. This gives a third-power polynomial, whereas in the

electric polarizability case fourth-power polynomials were

obtained. However, the criterion of usefulness is not the

power of the polynomials but the extent to which the

expressions adequately represent the properties of the

functions. That is now to be determined.

III. ELLIPSE

The ellipse will be considered first as it is the only shape

for which an analytical solution exists, and it can therefore

be used as an indication of the accuracy of the method.

At a =1, the ellipse is a circle for which the magnetic

polarizability is known [4], [5] to be ~L3. Thus, at a =1,

~(a) = ~, so that the third-power polynomial approxima-

tion for the ellipse is

~(a)= :a2{l.0+0.2732a}. (2)

TABLE I
TRANSVERSEMAGNETIC POLARIZABILIT~ COEFFICIENTOF

AN ELLIPSEASA FUNCTION OFASPECTRATIO

a POl ynomial Exact Value Error

1.0 0.1667 0.1667

0.9 0.1321 0.1316 0.4%

0.8 0:1021 0.1013 0.8%

0.7 0.07641 0.07557 1.1%

0.6 0.05485 0.05404 1.5%

0.5 0.03720 0.03653 1.8%

0.4 0.02323 0.02275 2.1%

0.3 0.01275 0.01247 2.2%

0.2 0.005522 0.005406 2.1%

0.1 0.001345 0.001324 1.6%

From [4] and [5], the exact expression for the transverse

magnetic polarizability coefficient for an ellipse, expressed

in the notation of this paper, is

d(l – az)

24[E(~=)-a2K(/=)]

in which K and -E are complete elliptic integrals of the

first and second kinds, respectively, as defined in [6].

In Table I, values for the polarizability coefficient

calculated from the polynomial are compared with those

from the exact solution. The accuracy of the third-power

polynomial approximation for the transverse magnetic

polarizability is of the same order as that obtained with the

fourth-power polynomial and electric polarizability [1].

IV. ROUNDED END SLOT

The next shape for which a polynomial approximation

for the polarizability coefficient will be given is ‘the rounded

end slot, as in Fig. l(c). It also becomes a circle at a =1,

and the polynomial is

~(a) = &2{l.0-0.1512a}. (3)

Probably the best information for comparison purposes

is that which was used to prepare Fig. 5 of [7], in which the

“dimensionless polarizability,” defined as the aperture

polarizability divided by (area)3/2, is plotted against aspect

ratio for several aperture shapes. The authors of [7] have

kindly supplied a copy of the report [8] containing the

corresponding tables of numerical values. Note that the

convention used in [7] and [8] resulted in the aperture
polarizabilities being twice those of the convention of [4],

[5], and this paper.
In Table II, values for the polarizability coefficient from

the polynomial (3) are compared with numerical results

interpreted from [8]. Agreement between the two sets of

data in Table II is better than 1.8% for all values of a.
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TABLE II
TRANSVERSE MAGNETIC POLARIZABILITY COEFFICIENT OF

A ROUNDED END SLOT AS A FUNCTION OF ASPECT RATIO

a PolynOml al Numerical Solution [8]

1.0 0.1666 0.1667

0.8 0.1105 0.1118

0.5 0.04538 0.04618

0.333 0.02072 0.02103

0.2 0.007616 0.007684

0.1 0.001934 0.001944

V. COMMENTS ON THE MAGNETIC POLARIZABILITY

OF A SQUARE

The rectangle and the diamond both become squares for

a =1, but there is no analytically determined magnetic

polarizability for a square. Cohn [2] in his electrolytic tank

analog experiments provided a value of 0.2590~3, where L

is the side length of the square. McDonald, using the

variational modal method described in [9], calculated

0.2496L3, and Fikhmanas and Fridberg [10] have pub-

lished a lower bound of 0.251L3 and an upper bound

of 0.280L3. More recently, using numerical methods,

De Smedt and Van Bladel [7] calculated 0.2596L3, and

Okon and Harnngton [11] obtained 0.2581L3. The reason

for the spread of approximately 4 percent in the calculated

values for the magnetic polarizabilit y of a square is not

known at this time. For the transverse magnetic polariza-

bility of a rectangle, of which the square is a special case,

agreement between the results from [7] and [9] improves in

percentage terms as the aspect ratio decreases, and is

better than 1 percent for a = 0.1. (For the electric polariza-

bility of a square, the two numerical values referred to in

[1] were 0.1116L3 and 0.1126L3, i.e., agreement within 1

percent. However, the Fikhmanas and Fridberg bounds

[10] of 0.1131L3 and 0.1190L3 are not consistent with

either of the numerical values.) For the purposes of il-

lustrating the polynomial approximation method, the

De Smedt and Van Bladel result of 0.2596L3 for the

magnetic polarizability of a square will be used, and

the values from the resulting polynomial expressions for

the rectangle and diamond will be compared with

De Smedt’s calculated values [8] for those shapes. If a

different result for the square is later found to be more
accurate, the polynomials can be modified accordingly.

VI. RECTANGLE

The third-power polynomial which has the appropriate

behavior for the rectangle as a -+ O and which has the

value of 0.2596 at a = 1 is

~(a) =;a2{l.0+0.3221a}. (4)

Values calculated from this expression are compared in

Table III with those obtained from the dimensionless

polarizabilities in [8]. Agreement is better than 0.8 percent
for all values of a shown in the table.

TABLE III
TRANSVERSEMAGNETIC POLARJZABILITYCOEFFICIENTOF

A RECTANGLEASA FUNCTION OFASPECTRATIO

a Polynomial Numerical Sol ution [8]

1.0 0.2596 0.2596

0.8 0.1580 0.1587

0.75 0.1371 0.1377

0.5 0.05699 0.05743

0.333 0.02416 0.02435

0.2 0.008360 0.008412

0.1 0.002027 0.002035

TABLE IV
TRANSVERSEMAGNETIC POLARIZABILITY COEFFICIENTOF

A DIAMOND ASA FUNCTION OFASPECTRATIO

a Polynomial Numerical sol ution [8]

1.0 0.09178 0.09178

0.8 0.05537 0.05468

0.75 0.04792 0.04709

0.5 0.01965 0.01908

0.333 0.008247 0.007964

0.2 0.002829 0.002734

0.1 0.0006808 0.0006602

VII. DIAMOND

At a =1 the diamond is a square, so that with L defined

as in Fig. l(c) and the polarizability coefficient for a

square taken as 0.2596 from [8], then the polarizability

coefficient for a diamond of a = 1 is 0.2596/2ti.

This leads to the following third-power polynomial ap-

proximation for the polarizability coefficient:

~(a) = &2{l.0+0.4023a). (5)

In Table IV, values calculated from (5) are compared

with those derived from the numerical solution [8]. The

maximum difference is approximately 3.5 percent, which is

more than for the other three shapes considered, but still

acceptable for many applications.

VIII. HIGHER ORDER POLYNOMIALS

An important feature of the polynomial approximation

approach is that useful results can be obtained simply

from consideration of properties which an exact solution

must possess. That is particularly the case for the ellipse

and the rounded end slot, as the third-power polynomial

expressions for those shapes do not rely on any numerical

solutions. For the rectangle and the diamond, a numerical

value for the square is used.

Of course, if the polarizability of any shape is specified

for a values in addition to a =1, higher order polynomials

can be obtained. As an example, if the known polarizabil-

ity value for the ellipse at a = 0.5 is used, the following
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fourth-power polynomial approximation results:

j(a) = ~a2{l.0+0.1919a +0.0814a2} .

Agreement with the exact solution is better than 0.9 per-

cent, compared with 2.2 percent for the third-power poly-

nomial.

Likewise, if numerical values at a = 0.5 from [8] are used

to generate fourth-power expressions for the other shapes,

the following polynomials result, with similar improve-

ments in accuracy:

Rounded endslot f(cr)=~a2{l.0-0.0857a -0.0654a2}

Rectangle j(a) = &2{l.0+0.3577a - 0.0356a2}

Diamond ~((x) = ~a2{l.0+0.2620a +0.1403ct2}

However, for most applications the third-power polynomi-

als would probably be sufficient. There is also the possibil-

ity that the apparently increased accuracy of the higher

order polynomials may be illusory, as the numerical values

from which they are derived may not be sufficiently pre-

cise.

IX. CONCLUSIONS

Polynomial approximations have been given for the

transverse magnetic polarizability coefficients of some

small apertures. A comparison with other published data

indicates that the approximations should have sufficient

accuracy to be used in many applications. Multiplication

of the coefficients by L3 gives the polarizabilities of the

respective apertures.

It has been assumed that the apertures are small in

wavelengths and that the wall is of infinitesimal thickness.

If either of these conditions is not satisfied, correction

terms will be necessary.
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