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Polynomial Approximations for the Transverse
Magnetic Polarizabilities of Some Small
Apertures

NOEL A. MCDONALD, SENIOR MEMBER, IEEE

Abstract —Polynomial approximations are given for the magnetic
polarizabilities of some small apertures of various shapes, as functions of
the aperture width to length ratios, for the case where the applied magnetic
field is across the narrower dimension of the aperture. The shapes consid-
ered are the rectangle, diamond, rounded end slot, and ellipse, of which
only the last has an exact solution.

I. INTRODUCTION

N AN EARLIER PAPER [1], polynomial expressions

were given for the electric polarizabilities of small
apertures of the shapes shown in Fig. 1, namely the
rectangle, diamond, rounded end slot, and ellipse. Al-
though those expressions were not exact, all contained
features which would exist in exact solutions if they could
be found, and a comparison with previously published
data indicated that the polynomials had sufficient accu-
racy to be used in many applications.

The question arises whether a similar approach might
also provide useful results for the magnetic polarizabilities.
An important difference between the electric and magnetic
cases is that the magnetic polarizability for the tangential
magnetic field along the major dimension of the aperture
(here referred to as the longitudinal polarizability) is dif-
ferent from that with the tangential magnetic field trans-
verse to the major dimension (here referred to as the
transverse polarizability). There appears to be no general
relationship between the two magnetic polarizabilities.
Also, in the electric case, the polarizability is independent
of the choice of reference directions, and that indepen-
dence was used in [1] to relate the slope of the polarizabil-
ity coefficient to its magnitude for some shapes at an
aspect ratio of 1, thereby providing one equation for
solution of the terms of the polynomial. There seems to be
no equivalent result for magnetic polarizabilities.

This paper is concerned only with transverse magnetic
polarizabilities, i.e., where the tangential magnetic field is
transverse to the longer aperture dimension L, as shown in
Fig. 1. Longitudinal polarizabilities do not appear to be
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Fig. 1. Aperture shapes and direction of applied magnetic field.
(2) Rectangle. (b) Diamond. () Rounded end slot. (d) Ellipse.

functions suitable for approximation by simple polyno-
mials.

For each aperture shape, the transverse magnetic
polarizability can be expressed in the form

et ¥

in which f(W/L) is a dimensionless coefficient. In all
cases to follow, the ratio W/L will be designated a.

In the electric polarizability case, the behavior of the
polarizability coefficient for each aperture shape was found
to be quadratic for a— 0, and both the magnitude and
slope were known for a=1. This provided enough infor-
mation to define a fourth-power polynomial approxima-
tion. In the transverse magnetic case there is one less
equation as there is no symmetry property, and from the
behavior for @ — 0 and the value at a=1 there are only
enough equations to define a third-power polynomial ap-
proximation. Also, for the transverse magnetic polarizabili-
ties there are fewer experimental data for comparison, as
Cohn’s electrolytic tank experiments [2] did not include
that orientation. The need for more data for that situation
has been recognized [3].

II. BEHAVIORFOR W < L

Consider first the magnetic polarizabilities of the aper-
ture shapes in Fig. 1 with W < L and with the applied
tangential magnetic field transverse to the aperture, i.e.,
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parallel with the W dimension. In [4] Bethe gave the result
for the magnetic polarizability P,, of a long slit (equivalent
to Fig. 1(a) with W <« L) and with transverse magnetic
field as

P i WL
™16

which may be interpreted as a polarizability of (7,/16)W?
per unit length. This suggests that if the width w of a long
narrow aperture varies very slowly along the length, then
the transverse magnetic polarizability could be obtained by
integrating (7,/16)w? along the length of the aperture.

If applied to a long narrow ellipse, as in Fig. 1(d) but
with W < L, this postulate gives for the polarizability

" wer

24
which agrees with the exact solution from [5] (and that
given in Section III of this paper) if that solution is applied
to an ellipse of eccentricity approaching unity. The appli-
cation of this reasoning to all of the shapes in Fig. 1 gives
for W< L

T
_ 2
16 WL rectangle
v
— W?L diamond
48
P, = 7
I WZL rounded end slot
" WL i
> ellipse.

For each shape and for 0 <axl1, the polarizability
coefficient f(e«) is approximated by a polynomial of the
form

f(a) =a+ba+ca®+da’. (1)
From the behavior for W< L, ie., a—0, then a=0,
b =0, and ¢ is known for each of the four aperture shapes.
The remaining term is obtained from the value of f(a) at
a=1. This gives a third-power polynomial, whereas in the
electric polarizability case fourth-power polynomials were
obtained. However, the criterion of usefulness is not the
power of the polynomials but the extent to which the
expressions adequately represent the properties of the
functions. That is now to be determined.

III.

The ellipse will be considered first as it is the only shape
for which an analytical solution exists, and it can therefore
be used as an indication of the accuracy of the method.

At a=1, the ellipse is a circle for which the magnetic
polarizability is known [4], [5] to be £L°. Thus, at a=1,
f(a) =1, so that the third-power polynomial approxima-
tion for the ellipse is

ELLIPSE

fla) = ;—4a2{1.0+0.2732a}. )
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TABLEI
TRANSVERSE MAGNETIC POLARIZABILITY COEFFICIENT OF
AN ELLIPSE AS A FUNCTION OF ASPECT RATIO

[ Polynomial Exact Value Error
1.0 0,1667 0.1667 -
0.9 0.1321 0.1316 0.4%
0.8 0;1021 0.1013 0.8%
0.7 0.07641 0.07557 l.1%
0.6 0.05485 0.05404 1.5%
0.5 0.03720 0.03653 1.8%
0.4 0.02323 0.02275 2.1%
0.3 0.01275 0.01247 2.2%
0.2 0.005522 0.005406 2.1%
0.1 0.001345 0.001324 1.6%

From [4] and [5], the exact expression for the transverse
magnetic polarizability coefficient for an ellipse, expressed
in the notation of this paper, is

7a*(1— a?)

24| E(1- o) - 2K (V1- o?)]

in which K and E are complete elliptic integrals of the
first and second kinds, respectively, as defined in [6].

In Table I, values for the polarizability coefficient
calculated from the polynomial are compared with those
from the exact solution. The accuracy of the third-power
polynomial approximation for the transverse magnetic
polarizability is of the same order as that obtained with the
fourth-power polynomial and electric polarizability [1}.

IV. RounDED END SLOT

The next shape for which a polynomial approximation
for the polarizability coefficient will be given is the rounded
end slot, as in Fig. 1(c). It also becomes a circle at a=1,
and the polynomial is

F(a) = 1”—6a2{1.o—o.151za}. (3)

Probably the best information for comparison purposes

is that which was used to prepare Fig. 5 of [7], in which the
“dimensionless polarizability,” defined as the aperture
polarizability divided by (area)*/?, is plotted against aspect
ratio for several aperture shapes. The authors of 7] have
kindly supplied a copy of the report [8] containing the
corresponding tables of numerical values. Note that the
convention used in [7] and [8] resulted in the aperture
polarizabilities being twice those of the convention of [4],
[5], and this paper.
" In Table 11, values for the polarizability coefficient from
the polynomial (3) are compared with numerical results
interpreted from [8]. Agreement between the two sets of
data in Table II is better than 1.8% for all values of a.
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TABLE II
TRANSVERSE MAGNETIC POLARIZABILITY COEFFICIENT OF
A ROUNDED END SLOT AS A FUNCTION OF ASPECT RATIO

TABLE III
TRANSVERSE MAGNETIC POLARIZABILITY COEFFICIENT OF
A RECTANGLE AS A FUNCTION OF ASPECT RATIO

a Polynomial Numerical Solution [8]
1.0 0.1666 0.1667

0.8 0.1105 0.1118

0.5 0.04538 0.04618

0.333 0.02072 0.02103

0.2 0.007616 0.007684

0.1 0.001934 0,001944

V. COMMENTS ON THE MAGNETIC POLARIZABILITY
OF A SQUARE

The rectangle and the diamond both become squares for
a=1, but there is no analytically determined magnetic
polarizability for a square. Cohn {2] in his electrolytic tank
analog experiments provided a value of 0.2590L°, where L
is the side length of the square. McDonald, using the
variational modal method described in [9], calculated
0.2496L°, and Fikhmanas and Fridberg [10] have pub-
lished a lower bound of 0.251L% and an upper bound
of 0.280L% More recently, using numerical methods,
De Smedt and Van Bladel [7] calculated 0.2596L3, and
Okon and Harrington [11] obtained 0.2581L3. The reason
for the spread of approximately 4 percent in the calculated
values for the magnetic polarizability of a square is not
known at this time. For the transverse magnetic polariza-
bility of a rectangle, of which the square is a special case,
agreement between the results from [7] and [9] improves in
percentage terms as the aspect ratio decreases, and is
better than 1 percent for a = 0.1. (For the electric polariza-
bility of a square, the two numerical values referred to in
[1] were 0.1116L3 and 0.1126L%, i.e., agreement within 1
percent. However, the Fikhmanas and Fridberg bounds
[10] of 0.1131L% and 0.1190L? are not consistent with
either of the numerical values.) For the purposes of il-
lustrating the polynomial approximation method, the
De Smedt and Van Bladel result of 0.2596L° for the
magnetic polarizability of a square will be used, and
the values from the resulting polynomial expressions for
the rectangle and diamond will be compared with
De Smedt’s calculated values [8] for those shapes. If a
different result for the square is later found to be more
accurate, the polynomials can be modified accordingly.

VI. RECTANGLE

The third-power polynomial which has the appropriate
behavior for the rectangle as «— 0 and which has the
value of 0.2596 at a=1is

(4)

Values calculated from this expression are compared in
Table III with those obtained from the dimensionless
polarizabilities in [8]. Agreement is better than 0.8 percent
for all values of & shown in the table.

T
fla) = Ea2{1.0+0.3221a}.

a Polynomial Numerical Solution [8]
1.0 0.2596 0.2596

0.8 0.1580 0.1587

0.75 0.1371 0,1377

0.5 0.05699 0.05743

0.333 0.02416 0.02435

0.2 0.008360 0.008412

0.1 0.002027 0.002035

TABLE IV

TRANSVERSE MAGNETIC POLARIZABILITY COEFFICIENT OF
A DIAMOND AS A FUNCTION OF ASPECT RATIO

a Polynomial Numerical Solution [8]

1.0 0.09178 0.09178

0.8 0.05537 0.05468

0.75 0.04792 0.04709

0.5 0.01965 0.01908

0,333 0.008247 0.007964

0.2 0.002829 0,002734

0.1 0.0006808 0.0006602
VII. DiaMOND

At a=1 the diamond is a square, so that with L defined
as in Fig. 1(c) and the polarizability coefficient for a
square taken as 0.2596 from [8], then the polarizability
coefficient for a diamond of a=1 is 0.2596 /22 .

This leads to the following third-power polynomial ap-
proximation for the polarizability coefficient:

F(a) = %a2{1.0+0.4023a). ()

In Table IV, values calculated from (5) are compared
with those derived from the numerical solution [8]. The
maximum difference is approximately 3.5 percent, which is

more than for the other three shapes considered, but still
acceptable for many applications.

VIIL

An important feature of the polynomial approximation
approach is that useful results can be obtained simply
from consideration of properties which an exact solution
must possess. That is particularly the case for the ellipse
and the rounded end slot, as the third-power polynomial
expressions for those shapes do not rely on any numerical
solutions. For the rectangle and the diamond, a numerical
value for the square is used.

Of course, if the polarizability of any shape is specified
for a values in addition to a =1, higher order polynomials
can be obtained. As an example, if the known polarizabil-
ity value for the ellipse at a= 0.5 is used, the following

HIGHER ORDER POLYNOMIALS



MCDONALD: MAGNETIC POLARIZABILITIES OF SMALL APERTURES

fourth-pqwér polynomial approximation results:
w
fla)= —2-2a2{1.0+0.1919a+0.0814a2}.

Agreement with the exact solution is better than 0.9 per-
cent, compared with 2.2 percent for the th1rd -power poly-
nomial.

Likewise, if numerical values at a = 0.5 from [8] are used
to generate fourth-power expressions for the other shapes,
the following polynomials result, with similar improve-
ments in accuracy:

T
Rounded end slot f(a) = Eoﬁ{w —0.0857a —0.0654a%}

‘ T
Rectangle fa)= E012{1.0+0.3577oz —0.0356a°}

Diamond

However, for most applications the third-power polynomi-
- als would probably be sufficient. There is also the possibil-
ity that the apparently increased accuracy of the higher
order polynomials may be illusory, as the numerical values
from whmh they are derived may not be sufficiently pre-
cise.

IX. CONCLUSIONS

Polynomial ' approximations have been given for the
transverse magnetic polarizability coefficients' of some
small apertures. A comparison with other published data
indicates that the approximations should have sufficient

accuracy to be used in many applications. Multiplication -

of the coefficients by L* gives the polarizabilities of the
respective apertures

It has been assumed that the apertures are small in
wavelengths and that the wall is of infinitesimal thickness,
If either of these conditions is not satisfied, correction
terms will be necessary.
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